Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 470: 134301, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38626681

RESUMO

Carbendazim residue has been widely concerned, and nitrous oxide (N2O) is one of the dominant greenhouse gases. Microbial metabolisms are fundamental processes of removing organic pollutant and producing N2O. Nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) can change soil abiotic properties and microbial communities and simultaneously affect carbendazim degradation and N2O emission. In this study, the comprehensive linkages among carbendazim residue, N2O emission and microbial community after the DMPP application were quantified under different soil moistures. Under 90% WHC, the DMPP application significantly reduced carbendazim residue by 54.82% and reduced soil N2O emission by 98.68%. The carbendazim residue was negatively related to soil ammonium nitrogen (NH4+-N), urease activity, and ratios of Bacteroidetes, Thaumarchaeota and Nitrospirae under 90% WHC, and the N2O emission was negatively related to NH4+-N content and relative abundance of Acidobacteria under the 60% WHC condition. In the whole (60% and 90% WHC together), the carbendazim residue was negatively related to the abundances of nrfA (correlation coefficient = -0.623) and nrfH (correlation coefficient = -0.468) genes. The hao gene was negatively related to the carbendazim residue but was positively related to the N2O emission rate. The DMPP application had the promising potential to simultaneously reduce ecological risks of fungicide residue and N2O emission via altering soil abiotic properties, microbial activities and communities and functional genes. ENVIRONMENTAL IMPLICATION: Carbendazim was a high-efficiency fungicide that was widely used in agricultural production. Nitrous oxide (N2O) is the third most important greenhouse gas responsible for global warming. The 3, 4-dimethylpyrazole phosphate (DMPP) is an effective nitrification inhibitor widely used in agricultural production. This study indicated that the DMPP application reduced soil carbendazim residues and N2O emission. The asymmetric linkages among the carbendazim residue, N2O emission, microbial community and functional gene abundance were regulated by the DMPP application and soil moisture. The results could broaden our horizons on the utilizations DMPP in decreasing fungicide risks and N2O emission.


Assuntos
Carbamatos , Fungicidas Industriais , Microbiota , Nitrificação , Óxido Nitroso , Pirazóis , Microbiologia do Solo , Poluentes do Solo , Óxido Nitroso/análise , Poluentes do Solo/análise , Microbiota/efeitos dos fármacos , Benzimidazóis , Solo/química , Bactérias/genética , Bactérias/metabolismo , Bactérias/efeitos dos fármacos , Bactérias/classificação , Água/química
2.
J Agric Food Chem ; 72(14): 7672-7683, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38530782

RESUMO

Agrochemical residues and nitrous oxide (N2O) emissions have caused considerable threats to agricultural soil ecology. Nanoscale zerovalent iron (nZVI) and nitrification inhibitors might be complementary to each other to diminish soil agrochemical residues and N2O emissions and enhance soil bacterial community diversities. Compared to the control, the nZVI application declined soil paclobutrazol residues by 5.9% but also decreased the bacterial community co-occurrence network node. Combined nZVI and Dicyandiamide applications significantly decreased soil N2O emission rates and paclobutrazol residues but promoted Shannon diversity of the bacterial community. The increased soil pH, ammonium nitrogen, and Actinobacteriota could promote soil paclobutrazol dissipation. The nZVI generated double-edged sword effects of positively decreasing paclobutrazol residues and N2O emissions but negatively influencing soil multifunctionalities. The nZVI and Dicyandiamide could be complementary to each other in diminishing soil agrochemical residues and N2O emission rates but promoting soil bacterial community diversities simultaneously.


Assuntos
Guanidinas , Óxido Nitroso , Solo , Triazóis , Solo/química , Óxido Nitroso/química , Nitrificação , Agricultura , Bactérias/genética , Fertilizantes/análise , Agroquímicos/farmacologia , Nitrogênio/química
3.
Sci Total Environ ; 912: 169005, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38065494

RESUMO

Biological nitrogen fixation and nitrification inhibitor applications contribute to improving soil nitrogen (N) availability, however, free-living N fixation affected by nitrification inhibitors has not been effectively evaluated in soils under different weed management methods. In this study, the effects of the nitrification inhibitors dicyandiamide (DCD) and 3, 4-dimethylpyrazole phosphate (DMPP) on the nitrogenase, nifH gene,and diazotrophic communities in soils under different weed management methods (AMB, weeds growth without mowing or glyphosate spraying; GS, glyphosate spraying; MSG, mowing and removing weeds and glyphosate spraying; and WM, mowing aboveground weeds) were investigated. Compared to the control counterparts, the DCD application decreased soil nitrogenase activity and nifH gene abundance by 4.5 % and 37.9 %, respectively, under the GS management method, and the DMPP application reduced soil nitrogenase activity by 20.4 % and reduced the nifH gene abundance by 83.4 % under the MSG management method. The application of nitrification inhibitors significantly elevated soil NH4+-N contents but decreased NO3--N contents, which had adverse impacts on soil nifH gene abundance and nitrogenase activity. The nifH gene abundances were also negatively impacted by dissolved organic N and Geobacter but were positively affected by available phosphorus and diazotrophic community structures. Nitrification inhibitors significantly inhibited Methylocella but stimulated Rhizobiales and affected soil diazotrophic communities. The nitrification inhibitors DCD and DMPP significantly altered soil diazotrophic community structures, but weed management outweighed nitrification inhibitors in reshaping soil diazotrophic community structures. The non-targeted effects of the nitrification inhibitors DMPP and DCD on soil free-living N fixation were substantially influenced by the weed management methods.


Assuntos
Fixação de Nitrogênio , Solo , Solo/química , Nitrificação , Iodeto de Dimetilfenilpiperazina/farmacologia , Nitrogenase , Fosfatos , Microbiologia do Solo , Nitrogênio/análise , Fertilizantes
4.
J Agric Food Chem ; 71(46): 17689-17699, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37934059

RESUMO

Fungicide carbendazim accumulation in soils and plants is a wide concern. Nitrogen (N) is a substantial nutrient limiting crop growth and affecting soil microbial activity and the community in degrading fungicides. We investigated the effects of urea-hydrogen peroxide (UHP) and nitrification inhibitors Dicyandiamide (DCD) and 3,4-dimethylpyrazole phosphate (DMPP) on carbendazim accumulation and soil and endophytic microbial communities. The UHP application had negligible influences on soil and plant carbendazim accumulation, but the combined UHP and DCD decreased soil carbendazim accumulation by 5.31% and the combined UHP and DMPP decreased plant carbendazim accumulation by 44.36%. The combined UHP and nitrification inhibitor significantly decreased the ratios of soil Firmicutes and endophytic Ascomycota. Soil microbial community assembly was governed by the stochastic process, while the stochastic and deterministic processes governed the endophyte. Our findings could provide considerable methods to reduce fungicide accumulation in soil-plant systems with agricultural N management strategies.


Assuntos
Microbiota , Solo , Nitrificação , Peróxido de Hidrogênio/farmacologia , Peróxido de Carbamida/farmacologia , Iodeto de Dimetilfenilpiperazina/farmacologia , Microbiologia do Solo , Fertilizantes , Nitrogênio/análise
5.
Sci Total Environ ; 903: 166337, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37591394

RESUMO

Crop yield and quality are substantial indicators of evaluating agricultural nitrogen management practices, and the nitrate (NO3--N) is one of the predominant factors affecting crop quality. The NO3--N accumulation in vegetable crop affects plant growth and quality and human health. Therefore, it is necessary to stimulate vegetable yield but eliminate excessive NO3--N in soils and plants with feasible management strategies. Graphene oxide (GO) is a novel carbon nanomaterial that has attracted great attention, but rare research has been conducted to quantify the effects of GO on plant NO3--N accumulation and microbial communities. This study explored effects of the GO and nitrification inhibitors, dicyandiamide (DCD) and 3, 4-dimethylpyrazole phosphate (DMPP), on vegetable yields and NO3--N contents and bacterial communities in soil-cabbage (Brassica rapa subsp. Chinensis) system. The soil NO3--N content was significantly reduced with the single GO application. The cabbage NO3--N content was increased by 60.4 % while the cabbage yield was significantly enhanced by 101.9 % with the single GO application. Meanwhile, the Invsimpson index of soil bacterial community and the ACE and Chao1 richness estimators of endophytic bacterial community were significantly decreased by the GO application. Cabbage NO3--N content was significantly and negatively correlated with the soil Myxococcota, endophytic bacterial community co-occurrence network edge, cabbage soluble sugar and cabbage proline. The GO application generated double-edged sword effects of positively promoting yield but causing risks of NO3--N accumulation and quality deterioration. However, these adverse effects could be mitigated by the extra nitrification inhibitor application. The potential ecological risks of GO application to the vegetable quality and endophytic community should be considered.

6.
J Environ Manage ; 345: 118687, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37517094

RESUMO

Fungicides and nitrogen (N) fertilizers are essential to maintain plant yield in current intensive agriculture. Percarbamide is a novel type of N fertilizer with strong oxidizing property, and the nitrification inhibitor is widely used in agricultural production. It may be feasible to apply percarbamide and nitrification inhibitor as N management to promote fungicide dissipations in soil-plant system. This study quantified the effects of percarbamide and nitrification inhibitor dicyandiamide (DCD) and 3, 4-dimethylpyrazole phosphate (DMPP) on carbendazim residues, and microbial communities of soil-plant systems, and relationships among carbendazim residues, soil and endophytic microbial communities and plant yields were also comprehensively quantified. Compared with the control, the percarbamide significantly reduced soil carbendazim residues by 29.4% but enhanced the lettuce yield by 28.0%. Soil carbendazim residues were significantly and negatively correlated with the soil total N and NO3--N contents. Soil microbial community structures and co-occurrence networks were more sensitive to N management than their endophytic counterparts. In comparison to the percarbamide alone, the DCD significantly increased the nodes of soil fungal community co-occurrence network which were positively correlated with the plant yield. The DCD outweighed DMPP in increasing the lettuce yield and soil fungal community stability and reshaping soil bacterial community structure. Our study suggested that soil microbial communities were more sensitive to percarbamide and nitrification inhibitor applications than their endophytic counterparts under fungicide pressure and that the DCD outweighed DMPP in reshaping microbial communities. The integrated applications of percarbamide and nitrification inhibitors were promising soil N management strategies to promote fungicide removal and stimulate microbial community in the soil-plant systems.


Assuntos
Fungicidas Industriais , Microbiota , Solo/química , Nitrificação , Fungicidas Industriais/farmacologia , Iodeto de Dimetilfenilpiperazina/farmacologia , Fertilizantes/análise , Microbiologia do Solo , Nitrogênio/química
7.
Chemosphere ; 338: 139611, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37482310

RESUMO

Soil ammonia (NH3) volatilization and nitrous oxide (N2O) emission decrease nitrogen (N) utilization efficiency and cause some environmental problems. The N-cycling inhibitors are suggested to apply to enhance N utilization efficiency. Quantifying effects of N-cycling inhibitors on yield-scaled NH3 volatilization and N2O emission and functional genes could provide support for the optimal selection and application of N-cycling inhibitor. We conducted a meta-analysis to reveal the effects of N-cycling inhibitors on soil abiotic properties, functional genes and yield-scaled NH3 volatilization and N2O emission by extracting data from 166 published articles and linked their comprehensive relationships. The N-cycling inhibitors in this meta-analysis mainly includes nitrification inhibitors 3, 4-dimethyl pyrazole phosphate, dicyandiamide and 2-chloro-6-trichloromethylpyridine, urease inhibitor N-(n-butyl) thiophosphoric triamide and biological nitrification inhibitors methyl 4-hydroxybenzoate and 1, 9-decanediol. The N-cycling inhibitor applications significantly increased alkaline soil pH but significantly decreased acidic soil pH. The N-cycling inhibitors decreased soil AOB amoA gene abundances mostly under the condition of pH 4.5-6 (mean: 212%, 95% confidence intervals (CI): 249% and -176%) and significantly decreased nirS gene (mean: 39%; 95% CI: 72% and -6%). The yield-scaled NH3 volatilization was significantly decreased by the N-cycling inhibitors under the condition of soil pH = 7-8.5 (mean: 45%; 95% CI: 59% and -31%). The yield-scaled N2O emission was also significantly reduced by all N-cycling inhibitors and had negative correlations with the soil nirK and nirS gene abundances. The effects of N-cycling inhibitors on soil pH, ammonium-N, nitrate-N and nitrifying and denitrifying genes and yield-scaled NH3 volatilization and N2O emission were dominated by the inhibitor types, soil textures, crop species and environmental pH. Our study could provide technical support for the optimal selection and application of N-cycling inhibitor under different environmental conditions.


Assuntos
Amônia , Óxido Nitroso , Amônia/análise , Óxido Nitroso/análise , Volatilização , Fertilizantes/análise , Solo/química , Nitrogênio/análise , Agricultura
8.
J Hazard Mater ; 451: 131175, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-36913747

RESUMO

Applying nitrogen (N)-cycling inhibitors is an effective measure to improve N fertilizer utilization efficiency, but the effects of N-cycling inhibitors on fungicide residues in soil-crop systems are unclear. In this study, nitrification inhibitors dicyandiamide (DCD) and 3, 4-dimethylpyrazole phosphate (DMPP) and urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT) were applied into agricultural soils with fungicide carbendazim applications. The soil abiotic properties, carrot yields, carbendazim residues, bacterial communities and their comprehensive relationships were also quantified. Compared to the control treatment, the DCD and DMPP significantly decreased soil carbendazim residues by 96.2% and 96.0%, and the DMPP and NBPT significantly reduced carrot carbendazim residues by 74.3% and 60.3%, respectively. The nitrification inhibitor applications also generated significant and positive effects on carrot yields and soil bacterial community diversities. The DCD application significantly stimulated soil Bacteroidota and endophytic Myxococcota and modified soil and endophytic bacterial communities. Meanwhile, the DCD and DMPP applications also positively stimulated the co-occurrence network edges of soil bacterial communities by 32.6% and 35.2%, respectively. The linear correlation coefficients between soil carbendazim residues and pH, ETSA and NH4+-N contents were - 0.84, - 0.57 and - 0.80, respectively. The nitrification inhibitor applications generated win-win effects on the soil-crop systems by decreasing carbendazim residues but promoting soil bacterial community diversities and stabilities and crop yields.


Assuntos
Fungicidas Industriais , Solo , Solo/química , Nitrificação , Fungicidas Industriais/farmacologia , Iodeto de Dimetilfenilpiperazina/farmacologia , Bactérias , Nitrogênio/química , Fertilizantes , Amônia
9.
Heliyon ; 9(1): e12757, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36685395

RESUMO

Plant invasive success is attributed to invaders' ecological advantages over their native neighbors. However, increasing evidence suggests that these advantages are expected to attenuate over time because of natural enemy accumulation, ecological evolution of native species and autotoxicity. We determined how an invasive Ageratina adenophora could remain its competitive advantages over time by avoiding its autotoxicity. Our results highlighted that the autotoxicity of A. adenophora in its invaded soil was reduced by some microbes. Moreover, an autotoxic allelochemical, 2-coumaric acid glucoside, detected in the invaded soil, demonstrated distinctly autotoxic effects on its seed germination and seedling growth. However, the autotoxic effects were greatly alleviated by a bacterium Bacillus cereus, accumulated by A. adenophora. Furthermore, the allelochemical could be almost completely degraded by B. cereus within 96 h. Accordingly, we speculate that A. adenophora could aggregate B. cereus to release its autotoxicity maintaining its competitive advantages over time.

10.
Environ Pollut ; 319: 120992, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36596378

RESUMO

Repeated and high-dose carbendazim applications have caused serious soil carbendazim contamination, and eco-friendly and economical approaches have been suggested to promote carbendazim removal in agricultural soil. Spent mushroom substrate (SMS) is a special recycled resource after harvesting mushrooms and can be utilized in contaminated soil amendment. The SMS application into agricultural soil might increase antibiotic resistance gene abundances, and the health risks of SMS application might be reduced with reasonable management to adjust the related electron transport of soil nitrification or denitrification. In this study, the SMS and nitrification inhibitor dicyandiamide were used to remediate agricultural soil contaminated with the carbendazim, and the carbendazim contents, soil microbial biomass, activities and community and human disease genes were determined. Compared to the control treatment, the combined applications of SMS and dicyandiamide significantly decreased soil carbendazim content by 38.14% but significantly enhanced soil ß-glucosidase, chitinase, arylsulfatase, urease and electron transfer system activities. The relative abundances of Proteobacteria and Actinobacteria were increased by 11.0% and 8.2% with the SMS application, respectively. The carbendazim residues were negatively correlated with the soil pH, electron transfer system activities and relative abundances of Proteobacteria and Actinobacteria. The relative abundances of human disease genes were also dramatically increased with the SMS application, but compared to the SMS alone, extra dicyandiamide application significantly reduced the relative abundances of human disease genes in soils. The SMS applications into fungicide-contaminated soils could generate double-edged sword effects of facilitating fungicide dissipation but leading to potential health risk increase, while applying the dicyandiamide with SMS might be an effective strategy to decrease the negative effect of health risk.


Assuntos
Agaricales , Fungicidas Industriais , Poluentes do Solo , Humanos , Solo/química , Agaricales/química , Fungicidas Industriais/toxicidade , Fungicidas Industriais/análise , Microbiologia do Solo , Poluentes do Solo/análise
11.
Chemosphere ; 314: 137723, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36592835

RESUMO

Carbendazim is a highly effective benzimidazole fungicide and is widely used throughout the world. The effects of carbendazim contamination on the biology and environment should be paid more attention. We reviewed the published papers to evaluate the biological and environmental risks of carbendazim residues. The carbendazim has been frequently detected in the soil, water, air, and food samples and disrupted the soil and water ecosystem balances and functions. The carbendazim could induce embryonic, reproductive, developmental and hematological toxicities to different model animals. The carbendazim contamination can be remediated by photodegradation and chemical and microbial degradation. The carbendazim could enter into human body through food, drinking water and skin contact. Most of the existing studies were completed in the laboratory, and further studies should be conducted to reveal the effects of successive carbendazim applications in the field.


Assuntos
Ecossistema , Fungicidas Industriais , Humanos , Animais , Fungicidas Industriais/toxicidade , Fungicidas Industriais/química , Benzimidazóis/toxicidade , Benzimidazóis/química , Solo
12.
Front Plant Sci ; 12: 773676, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34917107

RESUMO

Urbanization causes alteration in atmospheric, soil, and hydrological factors and substantially affects a range of morphological and physiological plant traits. Correspondingly, plants might adopt different strategies to adapt to urbanization promotion or pressure. Understanding of plant traits responding to urbanization will reveal the capacity of plant adaptation and optimize the choice of plant species in urbanization green. In this study, four different functional groups (herbs, shrubs, subcanopies, and canopies, eight plant species totally) located in urban, suburban, and rural areas were selected and eight replicated plants were selected for each species at each site. Their physiological and photosynthetic properties and heavy metal concentrations were quantified to reveal plant adaptive strategies to urbanization. The herb and shrub species had significantly higher starch and soluble sugar contents in urban than in suburban areas. Urbanization decreased the maximum photosynthetic rates and total chlorophyll contents of the canopies (Engelhardtia roxburghiana and Schima superba). The herbs (Lophatherum gracile and Alpinia chinensis) and shrubs (Ardisia quinquegona and Psychotria rubra) species in urban areas had significantly lower nitrogen (N) allocated in the cell wall and leaf δ15N values but higher heavy metal concentrations than those in suburban areas. The canopy and subcanopy (Diospyros morrisiana and Cratoxylum cochinchinense) species adapt to the urbanization via reducing resource acquisition but improving defense capacity, while the herb and shrub species improve resource acquisition to adapt to the urbanization. Our current studies indicated that functional groups affected the responses of plant adaptive strategies to the urbanization.

13.
Appl Microbiol Biotechnol ; 105(23): 8907-8920, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34734313

RESUMO

Carbon dioxide (CO2) emissions from forest ecosystems originate largely from soil respiration, and microbial heterotrophic respiration plays a critical role in determining organic carbon (C) stock. This study investigated the impacts of successive nitrogen (N) and phosphorus (P) fertilization after 9 years on soil organic C stock; CO2 emission; and microbial biomass, community, and function in a Chinese fir plantation. The annual fertilization rates were (1) CK, control without N or P fertilization; (2) N50, 50 kg N ha-1; (3) N100, 100 kg N ha-1; (4) P50, 50 kg P ha-1; (5) N50P50, 50 kg N ha-1 + 50 kg P ha-1; and (6) N100P50, 100 kg N ha-1 + 50 kg P ha-1. The N100P50 treatment had the highest cumulative soil CO2 emissions, but the CK treatment had the lowest cumulative soil CO2 emissions among all treatments. The declines of soil organic C (SOC) after successive 9-year fertilization were in the order of 100 kg N ha-1 year-1 > 50 kg N ha-1 year-1 > CK. Compared to the CK treatment, successive N fertilization significantly changed soil microbial communities at different application rates and increased the relative gene abundances of glycoside hydrolases, glycosyl transferases, carbohydrate-binding modules, and polysaccharide lyases at 100 kg N ha-1 year-1. Relative to P fertilization alone (50 kg P ha-1 year-1), combined N and P fertilization significantly altered the soil microbial community structure and favored more active soil microbial metabolism. Microbial community and metabolism changes caused by N fertilization could have enhanced CO2 emission from heterotrophic respiration and eventually led to the decrease in organic C stock in the forest plantation soil. KEY POINTS: • N fertilization, alone or with P, favored more active microbial metabolism genes. • 100 kg N ha-1 fertilization significantly changed microbial community and function. • N fertilization led to a "domino effect" on the decrease of soil C stock.


Assuntos
Microbiota , Solo , Biomassa , Fertilização , Nitrogênio/análise , Fósforo , Respiração , Microbiologia do Solo
14.
Appl Microbiol Biotechnol ; 104(16): 7213-7224, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32632477

RESUMO

Bacteria play determining roles in forest soil environment and contribute to essential functions in the cycling of nitrogen (N) and phosphorus (P). Understanding the effects of different fertilizer applications, especially successive fertilization, on soil properties and bacterial community could reveal the impacts of fertilization on forest soil ecology and shed light on the nutrient cycling in forest system. This study aimed to evaluate the impacts of successive mineral N (NH4NO3) and P (NaH2PO4) fertilization at different rates, alone or together, on soil bacterial biomass and communities at 0-5, 5-10, and 10-20 cm. Compared with the control, N fertilization decreased soil pH, but P alone or with N fertilization had negligibly negative impacts on soil pH. Different mineral fertilizer applications, alone or together, showed no significant effects on soil organic matter contents, relative to the control treatment. Bacterial biomass remained stable to different fertilizations but decreased with sampling depths. Sole N or P fertilization, rather than combined fertilizations, significantly changed soil bacterial community structures. Our results demonstrated that mineral N or P fertilization alone significantly affected bacterial community structures rather than biomass in the plantation soils. KEY POINTS: • Impacts of successive mineral fertilization on soil bacteria were determined. • Mineral fertilization showed negligible impacts on bacterial biomass. • N additions stimulated Chloroflexi relative abundances. • Mineral N or P fertilization significantly altered bacterial community structure.


Assuntos
Bactérias/efeitos dos fármacos , Fertilizantes/análise , Nitrogênio/farmacologia , Fósforo/farmacologia , Microbiologia do Solo , Agricultura , Biomassa , Concentração de Íons de Hidrogênio , Solo/química
15.
Sci Total Environ ; 642: 879-886, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29925058

RESUMO

As an anthropogenic disturbance, prescribed burning may alter the biogeochemistries of nutrients, including nitrogen (N) cycling, in forest ecosystems. This study aimed to examine the changes in N mineralization, nitrification and denitrification rates following prescribed burning in a suburban forest located in subtropical Australia and assess the interactive relationships among soil properties, functional gene abundances and N transformation rates. After a prescribed burning event, soil pH value increased, but soil labile carbon and mineral N contents decreased. Net N mineralization rates, potential nitrification rates and ammonium-oxidizing archaea and bacteria (AOA and AOB) amoA gene abundances in the soils all increased after 3 months of the prescribed burning. However, the abundances of different functional genes related to denitrification changed differently after the prescribed burning. The net N mineralization rates could be best described by soil abiotic properties, rather than functional gene abundances. In contrast, potential denitrification rates were positively related to soil nirK gene abundances. Potential nitrification rates could be influenced by both soil chemical and microbial properties. The results revealed that the prescribed burning might increase N mineralization and nitrification rates in the forest soil.

16.
Environ Sci Pollut Res Int ; 25(23): 23106-23116, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29860689

RESUMO

Phytoremediation with biochar addition might alleviate pollutant toxicity to soil microorganism. It is uncertain to what extent biochar addition rate could affect activities of enzymes related to soil nitrogen (N) mineralization and alter fungal community under the phytoremediation. This study aimed to reveal the effects of Medicago sativa L. (alfalfa) phytoremediation, alone or with biochar additions, on soil protease and chitinase and fungal community and link the responses of microbial parameters with biochar addition rates. The alfalfa phytoremediation enhanced soil protease activities, and relative to the phytoremediation alone, biochar additions had inconsistent impacts on the corresponding functional gene abundances. Compared with the blank control, alfalfa phytoremediation, alone or with biochar additions, increased fungal biomass and community richness estimators. Moreover, relative to the phytoremediation alone, the relative abundances of phylum Zygomycota were also increased by biochar additions. The whole soil fungal community was not significantly changed by the alfalfa phytoremediation alone, but was indeed changed by alfalfa phytoremediation with 3.0% (w/w) or 6.0% biochar addition. This study suggested that alfalfa phytoremediation could enhance N mineralization enzyme activities and that biochar addition rates affected the responses of fungal community to the alfalfa phytoremediation.


Assuntos
Carvão Vegetal/química , Recuperação e Remediação Ambiental/métodos , Fungos/efeitos dos fármacos , Medicago sativa/metabolismo , Microbiologia do Solo , Solo/química , Biodegradação Ambiental , Quitinases/metabolismo , Medicago sativa/crescimento & desenvolvimento , Nitrogênio/metabolismo , Peptídeo Hidrolases/metabolismo
17.
Microb Ecol ; 76(3): 771-781, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29497766

RESUMO

Harvest residues contain large stores of carbon (C) and nitrogen (N) in forest plantations. Decomposing residues can release labile C and N into soil and thus provide substrates for soil bacterial communities. Previous studies showed that residue retention could increase soil C and N pools and activate bacterial communities in the short term (≤ 10 years). The current study examined the effects of a long-term (19-year) harvest residue retention on soil total and water and hot water extractable C and N pools, as well as bacterial communities via Illumina MiSeq sequencing. The experiment was established in a randomised complete block design with four replications, southeast Queensland of Australia, including no (R0), single (R1, 51 to 74 t ha-1 dry matter) and double quantities (R2, 140 t ha-1 dry matter) of residues retained. Generally, no significant differences existed in total C and N, as well as C and N pools extracted by water and hot water among the three treatments, probably due to negligible amounts of labile C and N released from harvest residues. Soil δ15N significantly decreased from R0 to R1 to R2, probably due to reduced N leaching with residue retention (P < 0.001). Residue retention increased the relative abundances of Actinobacteria (P = 0.016) and Spartobacteria (P < 0.001), whereas decreased Betaproteobacteria (P = 0.050). This favour for the oligotrophic groups probably caused the decrease in the bacterial diversity as revealed by Shannon index (P = 0.025). Hence, our study suggests that residue retention is not an appropriate management practice in the long term.


Assuntos
Bactérias/isolamento & purificação , Biodiversidade , Microbiologia do Solo , Solo/química , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Carbono/análise , Carbono/metabolismo , Nitrogênio/análise , Nitrogênio/metabolismo , Filogenia , Queensland
18.
Environ Sci Pollut Res Int ; 25(2): 1460-1469, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29090446

RESUMO

Nitrogen (N) limitation is one of the major constrain factors for biochar in improving plant growth, the same for elevated atmospheric carbon dioxide (CO2). Hence, we hypothesized that (1) biochar would induce the same plant responses as elevated CO2 under N-poor conditions; (2) elevated CO2 would decrease the potential of biochar application in improving plant growth. To test these hypotheses, we assessed the effects of pinewood biochar, produced at three pyrolytic temperatures (650, 750 and 850 °C), on C and N allocation at the whole-plant level of three plant species (Austrostipa ramossissima, Dichelachne micrantha and Isolepis nodosa) grown in the N poor mine spoil under both ambient (400 µL L-1) and elevated (700 µL L-1) CO2 concentrations. Our data showed that biochar addition (1) significantly decreased leaf total N and δ15N (P < 0.05); (2) decreased leaf total N and δ15N more pronouncedly than those of root; and (3) showed more pronounced effects on improving plant biomass under ambient CO2 than under elevated CO2 concentration. Hence, it remained a strong possibility that biochar addition induced the same plant physiological responses as elevated CO2 in the N-deficient mine spoil. As expected, elevated CO2 decreased the ability of biochar addition in improving plant growth.


Assuntos
Dióxido de Carbono/farmacologia , Carvão Vegetal/farmacologia , Recuperação e Remediação Ambiental/métodos , Mineração , Poaceae/efeitos dos fármacos , Biomassa , Dióxido de Carbono/química , Nitrogênio/química , Nitrogênio/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Poaceae/metabolismo , Solo/química
19.
Chemosphere ; 184: 892-899, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28651315

RESUMO

Apart from the contaminant removal, the remediation of agricultural soil should also pay more attention to soil nutrient retention and biogeochemical cycling. This study aimed to evaluate changes of soil properties, potential nitrification rates (PNRs), and functional gene abundances and link their relationships after remediating co-contaminated agricultural soil with Medicago sativa L. (alfalfa) planting, alone or together with biochar application. Compared with the control (CK), alfalfa planting, alone or together with biochar application, could significantly increase soil organic matter (SOM) contents and discrepantly affect soil pH values. The PNRs of the amended treatments were significantly higher than that of the CK. Moreover, alfalfa plantings also enhanced the abundances of functional genes related to soil nitrification and denitrification, with the sole exception of nosZ gene. Stepwise regression analysis revealed that the PNRs were best described by the gene abundance ratios of AOB amoA/nifH and nirS gene abundances. Compared with the CK, alfalfa planting, alone or with biochar application, could restore nitrogen cycling in the co-contaminated agricultural soil and enhance the PNRs via decreasing contaminant bio-availabilities and increasing SOM contents and gene abundance ratios of AOB amoA/nifH.


Assuntos
Agricultura , Recuperação e Remediação Ambiental , Fungicidas Industriais/química , Metais Pesados/química , Microbiologia do Solo , Bactérias/genética , Carvão Vegetal , Desnitrificação , Genes Microbianos , Nitrificação , Nitrogênio/química , Ciclo do Nitrogênio , Solo/química
20.
Sci Total Environ ; 599-600: 254-263, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28477482

RESUMO

Agrochemical applications may have unintended detrimental effects on soil microorganisms and soil health. However, limited studies have been conducted to evaluate the effects of repeated fungicide applications and interactive effects of different agrochemical applications on soil microorganisms. In this study, an incubation experiment was established to evaluate the potential influences of the fungicide iprodione and the nitrification inhibitor 3, 4-dimethylpyrazole phosphate (DMPP) on soil enzyme activities and bacterial properties. Weekly iprodione applications decreased the activities of all enzymes tested, and DMPP application inhibited soil urease activity. Compared with the blank control, bacterial 16S rRNA gene abundance decreased following repeated iprodione applications, but increased after DMPP application. After 28days of incubation, the treatment receiving both iprodione and DMPP application had higher bacterial 16S rRNA gene abundance and Shannon diversity index than the treatment with iprodione applications alone. Repeated iprodione applications significantly increased the relative abundance of Proteobacteria, but decreased the relative abundances of Chloroflexi and Acidobacteria. Simultaneously, bacterial community structure was changed by repeated iprodione applications, alone or together with DMPP. These results showed that repeated iprodione applications exerted negative effects on soil enzyme activities, bacterial biomass and community diversity. Moreover, relative to iprodione applications alone, additional DMPP application could alleviate the toxic effects of iprodione applications on bacterial biomass and community diversity.


Assuntos
Aminoimidazol Carboxamida/análogos & derivados , Bactérias/efeitos dos fármacos , Fungicidas Industriais/química , Hidantoínas/química , Pirazóis/química , Microbiologia do Solo , Solo/química , Aminoimidazol Carboxamida/química , Enzimas/análise , Fosfatos , RNA Ribossômico 16S/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...